论文标题
在平面覆盖任务中学习协调工人站多机器人系统
Learning to Coordinate for a Worker-Station Multi-robot System in Planar Coverage Tasks
论文作者
论文摘要
对于大规模的大规模任务,多机器人系统(MRS)可以通过利用每个机器人的不同功能,移动性和功能来有效提高效率。在本文中,我们关注大规模平面区域中的多机器人覆盖路径计划(MCPP)问题,并在机器人资源有限的环境中随机动态干扰。我们介绍了一个工人站,由多个工人组成,这些工人的实际工作资源有限,一个车站拥有足够的资源来补充资源。我们旨在通过将其作为完全合作的多代理增强学习问题来解决工人站MRS的MCPP问题。然后,我们提出了一种端到端分散的在线规划方法,该方法同时解决了工人的覆盖范围计划,并为车站的集合计划。我们的方法设法减少随机动态干扰对计划的影响,而机器人可以避免与它们发生冲突。我们进行仿真和真实的机器人实验,比较结果表明,我们的方法在解决任务完成时间指标的MCPP问题方面具有竞争性能。
For massive large-scale tasks, a multi-robot system (MRS) can effectively improve efficiency by utilizing each robot's different capabilities, mobility, and functionality. In this paper, we focus on the multi-robot coverage path planning (mCPP) problem in large-scale planar areas with random dynamic interferers in the environment, where the robots have limited resources. We introduce a worker-station MRS consisting of multiple workers with limited resources for actual work, and one station with enough resources for resource replenishment. We aim to solve the mCPP problem for the worker-station MRS by formulating it as a fully cooperative multi-agent reinforcement learning problem. Then we propose an end-to-end decentralized online planning method, which simultaneously solves coverage planning for workers and rendezvous planning for station. Our method manages to reduce the influence of random dynamic interferers on planning, while the robots can avoid collisions with them. We conduct simulation and real robot experiments, and the comparison results show that our method has competitive performance in solving the mCPP problem for worker-station MRS in metric of task finish time.