论文标题
揭示了分层最大相自发转换为2D mxenes
Unveiling the spontaneous conversion of layered MAX phases to 2D MXenes
论文作者
论文摘要
托泊位化的分层非van der waals固体变成二维(2D)材料涉及具有原子精度的选择性蚀刻反应。纳米级的元素特异性,对结构敏感的蚀刻需要深入了解。在这里,通过密度功能理论计算和实验室制造的操作反应监测平台,瞬时将最大相变成MXENE的机理被揭示了。总体蚀刻动力学表现出sigmoidal曲线,在自动加速反应特征上,其活化能的较小。 60 kJ/mol。有趣的是,该活化能对应于通过Ti3c2缝的Al传输。因此,Al与氢氟酸溶液在密闭层间空间中的反应被认为是速率确定的步骤。最后但并非最不重要的一点是,我们发现元素和蚀刻剂与形成稳定产物的匹配对于蚀刻反应至关重要,而源自热力学的反应能为筛选有效的蚀刻剂提供了简单而有效的描述符。
Topochemically transforming layered non-van der Waals solid into two dimensional (2D) materials involves selective etching reactions with atomic precision. The element-specific, structure-sensitive etching at nanoscale urgently requires in-depth understanding. Here, by means of density functional theory calculations and a laboratory-made operando reaction monitoring platform, the mechanism of instantaneous transforming MAX phase into MXenes is unraveled. The overall etching kinetics exhibits a sigmoidal curve, following self-accelerating reaction character with a small activation energy of ca. 60 kJ/mol. Interestingly, this activation energy corresponds to the Al transport through Ti3C2 slits. Therefore the reaction of Al with hydrofluoric acid solution in the confined interlayer space is recognized as the rate-determining step. Last but not the least, we found that the match of A element and etchants to form stable products is critical for the etching reaction, and reaction energy derived from the thermodynamics provides an easy yet effective descriptor for screening efficient etchants.