论文标题
基于频道Lipschitzness的无数据后门删除
Data-free Backdoor Removal based on Channel Lipschitzness
论文作者
论文摘要
最近的研究表明,深层神经网络(DNN)容易受到后门攻击的影响,后门攻击会导致DNN的恶意行为,而当特定的触发器附在输入图像上时。进一步证明,感染的DNN具有一系列通道,与正常通道相比,该通道对后门触发器更敏感。然后,修剪这些通道可有效缓解后门行为。要定位这些通道,自然要考虑其Lipschitzness,这可以衡量他们对输入上最严重的扰动的敏感性。在这项工作中,我们介绍了一个名为Channel Lipschitz常数(CLC)的新颖概念,该概念定义为从输入图像到每个通道输出的映射的Lipschitz常数。然后,我们提供经验证据,以显示CLC(UCLC)上限与通道激活的触发激活变化之间的强相关性。由于可以从重量矩阵直接计算UCLC,因此我们可以以无数据的方式检测潜在的后门通道,并在感染的DNN上进行简单的修剪以修复模型。提出的基于Lipschitzness的通道修剪(CLP)方法非常快速,简单,无数据和健壮,可用于修剪阈值。进行了广泛的实验来评估CLP的效率和有效性,即使没有任何数据,也可以在主流防御方法中获得最先进的结果。源代码可在https://github.com/rkteddy/channel-lipschitzness-基于pruning上找到。
Recent studies have shown that Deep Neural Networks (DNNs) are vulnerable to the backdoor attacks, which leads to malicious behaviors of DNNs when specific triggers are attached to the input images. It was further demonstrated that the infected DNNs possess a collection of channels, which are more sensitive to the backdoor triggers compared with normal channels. Pruning these channels was then shown to be effective in mitigating the backdoor behaviors. To locate those channels, it is natural to consider their Lipschitzness, which measures their sensitivity against worst-case perturbations on the inputs. In this work, we introduce a novel concept called Channel Lipschitz Constant (CLC), which is defined as the Lipschitz constant of the mapping from the input images to the output of each channel. Then we provide empirical evidences to show the strong correlation between an Upper bound of the CLC (UCLC) and the trigger-activated change on the channel activation. Since UCLC can be directly calculated from the weight matrices, we can detect the potential backdoor channels in a data-free manner, and do simple pruning on the infected DNN to repair the model. The proposed Channel Lipschitzness based Pruning (CLP) method is super fast, simple, data-free and robust to the choice of the pruning threshold. Extensive experiments are conducted to evaluate the efficiency and effectiveness of CLP, which achieves state-of-the-art results among the mainstream defense methods even without any data. Source codes are available at https://github.com/rkteddy/channel-Lipschitzness-based-pruning.