论文标题

漂浮物同源性和非纤维结检测

Floer homology and non-fibered knot detection

论文作者

Baldwin, John A., Sivek, Steven

论文摘要

我们首次证明了Floer同源性和Khovanov同源性可以检测到无纤维结的结,而Homfly同源性检测到无限的许多这样的结。以前已知这些理论仅检测一个六节,全部均具有纤维。这些结果依赖于我们的主要技术定理,该定理在三个球体中对属1节进行了完整的分类,其结中的浮子同源性在Alexander顶部分级是二维。我们讨论了该分类在Dehn手术中的问题的应用,这些问题是在两个续集中进行的。其中包括一个证据,表明$ 0 $ - 手术的特征是无限的结,从1987年对财产的决议中概括了Gabai的结果。

We prove for the first time that knot Floer homology and Khovanov homology can detect non-fibered knots, and that HOMFLY homology detects infinitely many such knots; these theories were previously known to detect a mere six knots, all fibered. These results rely on our main technical theorem, which gives a complete classification of genus-1 knots in the 3-sphere whose knot Floer homology in the top Alexander grading is 2-dimensional. We discuss applications of this classification to problems in Dehn surgery which are carried out in two sequels. These include a proof that $0$-surgery characterizes infinitely many knots, generalizing results of Gabai from his 1987 resolution of the Property R Conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源