论文标题

使用CNN估算从3D Micro-CT图像的相对扩散

Estimating relative diffusion from 3D micro-CT images using CNNs

论文作者

Gärttner, Stephan, Frank, Florian, Woller, Fabian, Meier, Andreas, Ray, Nadja

论文摘要

在过去的几年中,卷积神经网络(CNN)证明了它们直接从孔隙空间几何形状直接预测多孔媒体研究中的特征数量的能力。与经典计算方法相比,由于经常观察到的计算时间大幅度减少,通过CNNS的大量参数预测特别令人信服,例如有效扩散。尽管目前的文献主要集中在完全饱和的多孔介质上,但部分饱和的情况也引起了人们的兴趣。由于在这种情况下可用于扩散运输的域的质不同,更复杂的几何形状,因此标准CNN倾向于以较低的饱和速率失去稳健性和准确性。在本文中,我们证明了CNN直接从完整的孔隙空间几何形状直接进行相对扩散的预测能力。因此,我们的CNN便利地融合了扩散预测和一个完善的形态模型,该模型描述了部分饱和多孔培养基中的相位分​​布。

In the past several years, convolutional neural networks (CNNs) have proven their capability to predict characteristic quantities in porous media research directly from pore-space geometries. Due to the frequently observed significant reduction in computation time in comparison to classical computational methods, bulk parameter prediction via CNNs is especially compelling, e.g. for effective diffusion. While the current literature is mainly focused on fully saturated porous media, the partially saturated case is also of high interest. Due to the qualitatively different and more complex geometries of the domain available for diffusive transport present in this case, standard CNNs tend to lose robustness and accuracy with lower saturation rates. In this paper, we demonstrate the ability of CNNs to perform predictions of relative diffusion directly from full pore-space geometries. As such, our CNN conveniently fuses diffusion prediction and a well-established morphological model which describes phase distributions in partially saturated porous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源