论文标题
正规化的时间进化张量张网络算法
Regularized scheme of time evolution tensor network algorithms
论文作者
论文摘要
提出了正则化分解以模拟量子晶格系统的时间演变。超越猪肉分解,繁殖物的紧凑结构表明高阶贝克 - 贝克贝尔 - 霍斯多夫系列。然后,开发了张量网络算法的正则方案,以确定具有海森贝格或基塔维型型相互作用的旋转晶格系统的基态能量。基准计算揭示了正则化算法的两个独特优点:它具有稳定的收敛性,即使将简单的更新方法应用于Kitaev Spin液体,也可以免疫偏差。产生的张量网络的收缩可以以较低的计算成本迅速收敛,从而放松瓶颈以计算物理期望值。
Regularized factorization is proposed to simulate time evolution for quantum lattice systems. Transcending the Trotter decomposition, the resulting compact structure of the propagator indicates a high-order Baker-Campbell-Hausdorff series. Regularized scheme of tensor network algorithms is then developed to determine the ground state energy for spin lattice systems with Heisenberg or Kitaev-type interactions. Benchmark calculations reveal two distinct merits of the regularized algorithm: it has stable convergence, immune to the bias even in applying the simple update method to the Kitaev spin liquid; contraction of the produced tensor network can converge rapidly with much lower computing cost, relaxing the bottleneck to calculate the physical expectation value.