论文标题
多代理深钢饰学习的最大相关价值分解
Maximum Correntropy Value Decomposition for Multi-agent Deep Reinforcemen Learning
论文作者
论文摘要
我们在流行的集中式培训范式(CTDE)的流行范式中探索了多代理深度强化学习的价值分解解决方案。作为公认的CTDE解决方案,加权QMIX是《星际争霸多代理挑战》(SMAC)的尖端,并在QMIX上实施了加权方案,以更加重视最佳的关节动作。但是,固定重量需要根据应用程序场景进行手动调整,这会痛苦地防止加权QMIX用于更广泛的工程应用中。在本文中,我们首先使用普通的一步矩阵游戏(OMG)证明了加权QMIX的缺陷,无论选择如何选择重量,加权QMIX努力都努力处理非单调的价值分解问题,并具有巨大的奖励分布差异。然后,我们将价值分解的问题描述为一种不足的单调的健壮回归问题,并首先尝试从信息理论学习的角度来解决价值分解问题。我们引入最大Correntropy Criterion(MCC)作为成本函数,以动态调整重量以消除奖励分布中最小值的影响。我们简化了实现,并提出了一种称为MCVD的新算法。对OMG进行的初步实验表明,MCVD可以处理非单调的值分解问题,并且对核带宽选择的耐受性很高。进一步的实验是在合作活动和多个SMAC场景上进行的,其中MCVD表现出前所未有的实施,广泛的适用性和稳定性。
We explore value decomposition solutions for multi-agent deep reinforcement learning in the popular paradigm of centralized training with decentralized execution(CTDE). As the recognized best solution to CTDE, Weighted QMIX is cutting-edge on StarCraft Multi-agent Challenge (SMAC), with a weighting scheme implemented on QMIX to place more emphasis on the optimal joint actions. However, the fixed weight requires manual tuning according to the application scenarios, which painfully prevents Weighted QMIX from being used in broader engineering applications. In this paper, we first demonstrate the flaw of Weighted QMIX using an ordinary One-Step Matrix Game (OMG), that no matter how the weight is chosen, Weighted QMIX struggles to deal with non-monotonic value decomposition problems with a large variance of reward distributions. Then we characterize the problem of value decomposition as an Underfitting One-edged Robust Regression problem and make the first attempt to give a solution to the value decomposition problem from the perspective of information-theoretical learning. We introduce the Maximum Correntropy Criterion (MCC) as a cost function to dynamically adapt the weight to eliminate the effects of minimum in reward distributions. We simplify the implementation and propose a new algorithm called MCVD. A preliminary experiment conducted on OMG shows that MCVD could deal with non-monotonic value decomposition problems with a large tolerance of kernel bandwidth selection. Further experiments are carried out on Cooperative-Navigation and multiple SMAC scenarios, where MCVD exhibits unprecedented ease of implementation, broad applicability, and stability.