论文标题
隐式神经网络的强大培训和验证:一种非欧几里得的合同方法
Robust Training and Verification of Implicit Neural Networks: A Non-Euclidean Contractive Approach
论文作者
论文摘要
本文提出了一个理论和计算框架,用于基于非欧几里得收缩理论对隐式神经网络进行训练和鲁棒性验证。基本思想是将神经网络的鲁棒性分析作为可及性问题,并使用(i)$ \ ell _ {\ infty} $ - norm inort inmort Input-Output-Output-Output lipschitz常数和(ii)网络的紧密包含函数过度适应其可触及的集合。 First, for a given implicit neural network, we use $\ell_{\infty}$-matrix measures to propose sufficient conditions for its well-posedness, design an iterative algorithm to compute its fixed points, and provide upper bounds for its $\ell_\infty$-norm input-output Lipschitz constant.其次,我们介绍了一个相关的嵌入式网络,并表明嵌入式网络可用于提供原始网络的可触及式集合的$ \ ell_ \ infty $ -Norm Box过度交配。此外,我们使用嵌入式网络来设计一种迭代算法,用于计算原始系统紧密包含函数的上限。第三,我们使用Lipschitz常数的上限和紧密包含函数的上限来设计两种算法,以训练和稳健性验证隐式神经网络。最后,我们应用算法在MNIST数据集上训练隐式神经网络,并将模型的鲁棒性与通过文献中现有方法训练的模型进行比较。
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks based upon non-Euclidean contraction theory. The basic idea is to cast the robustness analysis of a neural network as a reachability problem and use (i) the $\ell_{\infty}$-norm input-output Lipschitz constant and (ii) the tight inclusion function of the network to over-approximate its reachable sets. First, for a given implicit neural network, we use $\ell_{\infty}$-matrix measures to propose sufficient conditions for its well-posedness, design an iterative algorithm to compute its fixed points, and provide upper bounds for its $\ell_\infty$-norm input-output Lipschitz constant. Second, we introduce a related embedded network and show that the embedded network can be used to provide an $\ell_\infty$-norm box over-approximation of the reachable sets of the original network. Moreover, we use the embedded network to design an iterative algorithm for computing the upper bounds of the original system's tight inclusion function. Third, we use the upper bounds of the Lipschitz constants and the upper bounds of the tight inclusion functions to design two algorithms for the training and robustness verification of implicit neural networks. Finally, we apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.