论文标题

开放量子系统中的半马尔科夫流程:计数统计的连接和应用

Semi-Markov processes in open quantum systems: Connections and applications in counting statistics

论文作者

Liu, Fei

论文摘要

使用年龄结构形式主义,我们绝对在半马尔可夫过程与满足马尔可夫量子大师方程的开放量子系统的动力学之间建立联系。还提出了半马多夫过程的广义Feynman-kac公式。除了继承了由波形的分段确定性过程所具有的所有统计属性外,半马多夫过程还显示了它们在量子计数统计中的独特优势。与倾斜量子主方程的常规方法相比,它们可以应用于更一般的计数量。特别是,该方法所涉及的术语具有精确的概率含义。我们使用驱动的两级量子系统来体现这些结果。

Using the age-structure formalism, we definitely establish connections between semi-Markov processes and the dynamics of open quantum systems that satisfy the Markov quantum master equations. A generalized Feynman-Kac formula of the semi-Markov processes is also proposed. In addition to inheriting all statistical properties possessed by the piecewise deterministic processes of wavefunctions, the semi-Markov processes show their unique advantages in quantum counting statistics. Compared with the conventional method of the tilted quantum master equation, they can be applied to more general counting quantities. In particular, the terms involved in the method have precise probability meanings. We use a driven two-level quantum system to exemplify these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源