论文标题

Triphlapan:基于三重编码矩阵和转移学习预测HLA分子结合肽

TripHLApan: predicting HLA molecules binding peptides based on triple coding matrix and transfer learning

论文作者

Wang, Meng, Lei, Chuqi, Wang, Jianxin, Li, Yaohang, Li, Min

论文摘要

人白细胞抗原(HLA)是人类免疫领域的重要分子家族,它通过向T细胞呈现肽来识别外国威胁并触发免疫反应。近年来,肿瘤疫苗诱导特定免疫反应的合成已成为癌症治疗的最前沿。在计算上对肽和HLA之间的结合模式进行建模可以极大地加速肿瘤疫苗的发展。但是,大多数预测方法的性能非常有限,他们无法完全利用对现有生物学知识作为建模的基础的分析。在本文中,我们提出了HLA分子肽结合预测的TripHlapan,这是一种新型的PAN特异性预测模型。 TripHlapan通过整合三重编码矩阵,BigRu +注意模型和转移学习策略来表现强大的预测能力。全面的评估表明,Triphlapan在不同测试环境中预测HLA-I和HLA-II肽结合的有效性。在最新数据集中进一步证明了HLA-I的预测能力。此外,我们表明Triphlapan在黑色素瘤患者的样本中具有强大的结合重构能力。总之,Triphlapan是预测HLA-I和HLA-II分子肽与肿瘤疫苗合成的强大工具。

Human leukocyte antigen (HLA) is an important molecule family in the field of human immunity, which recognizes foreign threats and triggers immune responses by presenting peptides to T cells. In recent years, the synthesis of tumor vaccines to induce specific immune responses has become the forefront of cancer treatment. Computationally modeling the binding patterns between peptide and HLA can greatly accelerate the development of tumor vaccines. However, most of the prediction methods performance is very limited and they cannot fully take advantage of the analysis of existing biological knowledge as the basis of modeling. In this paper, we propose TripHLApan, a novel pan-specific prediction model, for HLA molecular peptide binding prediction. TripHLApan exhibits powerful prediction ability by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. The comprehensive evaluations demonstrate the effectiveness of TripHLApan in predicting HLA-I and HLA-II peptide binding in different test environments. The predictive power of HLA-I is further demonstrated in the latest data set. In addition, we show that TripHLApan has strong binding reconstitution ability in the samples of a melanoma patient. In conclusion, TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源