论文标题
与平行抓手的机器人无处不在的草药和沙拉
Robotic Untangling of Herbs and Salads with Parallel Grippers
论文作者
论文摘要
从一个或多个未分布的桩中挑选一个或多个对象对于机器人系统而言仍然是不平凡的。当桩由包含彼此纠缠的单个项目的颗粒材料(GM)组成时,尤其如此,导致挑选出更多的选择。这种容易发生的GM的关键特征之一是存在从桩中的主要物体延伸的突起。这项工作描述了后者在引起机械纠缠及其对选择一致性的影响方面所扮演的角色。 IT报告了实验,其中选择具有不同突出长度(PLS)的GMS导致挑选的质量差异提高了76%,这表明PL是挑选策略设计的一份信息。此外,为了应对这种效果,它提出了一种新的传播(SNP)方法,可大大减少纠结,从而使选择更加一致。与试图从桩中的无缠结点进行选择的先前方法相比,提出的方法导致选择误差(PE)的降低高达51%,并显示出对以前看不见的GMS的良好概括。
The picking of one or more objects from an unsorted pile continues to be non-trivial for robotic systems. This is especially so when the pile consists of a granular material (GM) containing individual items that tangle with one another, causing more to be picked out than desired. One of the key features of such tangle-prone GMs is the presence of protrusions extending out from the main body of items in the pile. This work characterises the role the latter play in causing mechanical entanglement and their impact on picking consistency. It reports experiments in which picking GMs with different protrusion lengths (PLs) results in up to 76% increase in picked mass variance, suggesting PL to be an informative feature in the design of picking strategies. Moreover, to counter this effect, it proposes a new spread-and-pick (SnP) approach that significantly reduces tangling, making picking more consistent. Compared to prior approaches that seek to pick from a tangle-free point in the pile, the proposed method results in a decrease in picking error (PE) of up to 51%, and shows good generalisation to previously unseen GMs.