论文标题

脉冲星无线电发射机制II。关于Pulsar等离子体中相对论Langmuir Soliton的起源

Pulsar radio emission mechanism II. On the origin of relativistic Langmuir solitons in pulsar plasma

论文作者

Rahaman, Sk. Minhajur, Mitra, Dipanjan, Melikidze, George I., Lakoba, Taras

论文摘要

观察结果表明,通过电荷束的曲率辐射,脉冲星血浆中脉冲星的相干无线电发射会激发。许多研究表明,这些电荷束是相对论的电荷孤子,是具有组速度分散($ g $),立方非线性($ Q $)和非线性landau landau damping($ s $)的非线性Schrödinger方程(NLSE)的解决方案。稳定孤子的形成至关重要地取决于参数$ g,q $和$ s $以及粒子分布函数。在这项工作中,我们使用从观察性约束获得的现实脉冲星血浆参数来探索NLSE的参数空间,用于颗粒的两个代表性分布函数(DF):lorentzian(长尾巴)和高斯(短尾巴)。 DF的选择严重影响$ | s/q | $的价值,进而确定孤子是否可以形成。数值模拟显示,构造良好的孤子仅适用于$ | s/q |的小值。 \ Lessim 0.1 $,而对于中等和更高的$ | s/q |的值\ gtrsim 0.5 $ soliton组被抑制。 $ | S/Q的小值| \ sim 0.1 $很容易用于长尾df的多种等离子温度。另一方面,短尾df仅针对某些狭窄的等离子体参数提供这些值。因此,在粒子DF中存在突出的高能尾部有利于孤子形成,用于广泛的等离子体参数。除了配对等离子体外,我们还包括一个铁离子成分,发现它们在修改NLSE系数或促进电荷分离方面做出了可忽略的贡献。

Observations suggest that coherent radio emission from pulsars is excited in a dense pulsar plasma by curvature radiation from charge bunches. Numerous studies propose that these charge bunches are relativistic charge solitons which are solutions of the non-linear Schrödinger equation (NLSE) with a group velocity dispersion ($G$), cubic-nonlinearity($q$) and non-linear Landau damping ($s$). The formation of stable solitons crucially depends on the parameters $G, q$ and $s$ and the particle distribution function. In this work, we use realistic pulsar plasma parameters obtained from observational constraints to explore the parameter space of NLSE for two representative distribution functions (DF) of particles' momenta: Lorentzian (long-tailed) and Gaussian (short-tailed). The choice of DF critically affects the value of $|s/q|$, which, in turn, determines whether solitons can form. Numerical simulations show that well-formed solitons are obtained only for small values of $|s/q| \lesssim 0.1$ while for moderate and higher values of $|s/q| \gtrsim 0.5$ soliton formation is suppressed. Small values for $|s/q| \sim 0.1$ are readily obtained for long-tailed DF for a wide range of plasma temperatures. On the other hand, short-tailed DF provides these values only for some narrow range of plasma parameters. Thus, the presence of a prominent high-energy tail in the particle DF favours soliton formation for a wide range of plasma parameters. Besides pair plasma, we also include an iron ion component and find that they make a negligible contribution in either modifying the NLSE coefficients or contributing to charge separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源