论文标题

同时订购自动机和普通语言 - 第一部分

Co-lexicographically Ordering Automata and Regular Languages -- Part I

论文作者

Cotumaccio, Nicola, D'Agostino, Giovanna, Policriti, Alberto, Prezza, Nicola

论文摘要

在目前的工作中,我们提出了一个新理论,表明所有自动机始终可以共同订购,并且可以定义并有效地确定其复杂性的内在度量,即,他们可允许的共同列出的部分订单的最小宽度$ p $ - 在这里被自动组合的Co-Lex宽度配音。我们首先表明,这种新措施立即捕获了自动机上几个看似无关的硬问题的复杂性。任何共同宽度的NFA $ p $:(i)具有同等的Powerset DFA,其大小为$ p $,而不是(如经典分析表明)在NFA的大小中; (ii)可以仅使用$θ(\ log p)$位编码每个过渡; (iii)承认一个线性空间数据结构求解正则表达式匹配查询,该查询与每个匹配的字符成正比与$ p^2 $。自动机的这种新参数化的某些后果是,诸如NFA等效的PSPACE问题在$ p $中是fpt,而正则表达式匹配问题的二次下限对于足够小的$ p $不存在。我们证明,可以展示一个典型的最小宽度DFA,接受语言$ \ mathcal l $ - 可以展示$ \ Mathcal l $的Hasse Automaton $ \ Mathcal H $。最后,我们探讨了两个相互矛盾的目标之间的关系:最大程度地减少DFA状态的宽度和最小化。在这种情况下,我们为共同有序的普通语言提供了类似的Myhill-nerode定理。

In the present work, we lay out a new theory showing that all automata can always be co-lexicographically partially ordered, and an intrinsic measure of their complexity can be defined and effectively determined, namely, the minimum width $p$ of one of their admissible co-lex partial orders - dubbed here the automaton's co-lex width. We first show that this new measure captures at once the complexity of several seemingly-unrelated hard problems on automata. Any NFA of co-lex width $p$: (i) has an equivalent powerset DFA whose size is exponential in $p$ rather than (as a classic analysis shows) in the NFA's size; (ii) can be encoded using just $Θ(\log p)$ bits per transition; (iii) admits a linear-space data structure solving regular expression matching queries in time proportional to $p^2$ per matched character. Some consequences of this new parametrization of automata are that PSPACE-hard problems such as NFA equivalence are FPT in $p$, and quadratic lower bounds for the regular expression matching problem do not hold for sufficiently small $p$. We prove that a canonical minimum-width DFA accepting a language $\mathcal L$ - dubbed the Hasse automaton $\mathcal H$ of $\mathcal L$ - can be exhibited. Finally, we explore the relationship between two conflicting objectives: minimizing the width and minimizing the number of states of a DFA. In this context, we provide an analogous of the Myhill-Nerode Theorem for co-lexicographically ordered regular languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源