论文标题

自适应目标条件神经网络:用于混合LIFI和WiFi网络的DNN辅助负载平衡

Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for Hybrid LiFi and WiFi Networks

论文作者

Ji, Han, Wang, Qiang, Redmond, Stephen J., Tavakkolnia, Iman, Wu, Xiping

论文摘要

由于异质访问点(APS)的性质,负载平衡(LB)是混合光忠诚度(LIFI)和无线保真度(WIFI)网络(HLWNETS)的挑战性问题。机器学习有可能以近乎最佳的网络性能为培训过程提供复杂性友好的LB解决方案。但是,当网络环境(尤其是用户数量)变化时,最新的(SOTA)学习辅助LB方法需要重新审查,从而大大限制了其实用性。在本文中,提出了一种新颖的深神经网络(DNN)结构,称为自适应目标条件神经网络(A-TCNN),该结构在其他用户的条件下为一个目标用户进行AP选择。此外,开发了一种自适应机制,可以通过分配数据速率要求将较大数量的用户映射到较大的数字,而不会影响目标用户的AP选择结果。这使提出的方法可以处理不同数量的用户,而无需重新培训。结果表明,A-TCNN实现了非常接近测试数据集的网络吞吐量,差距小于3%。还可以证明,A-TCNN可以获得与两个SOTA基准相当的网络吞吐量,同时最多将运行时减少了三个数量级。

Load balancing (LB) is a challenging issue in the hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks (HLWNets), due to the nature of heterogeneous access points (APs). Machine learning has the potential to provide a complexity-friendly LB solution with near-optimal network performance, at the cost of a training process. The state-of-the-art (SOTA) learning-aided LB methods, however, need retraining when the network environment (especially the number of users) changes, significantly limiting its practicability. In this paper, a novel deep neural network (DNN) structure named adaptive target-condition neural network (A-TCNN) is proposed, which conducts AP selection for one target user upon the condition of other users. Also, an adaptive mechanism is developed to map a smaller number of users to a larger number through splitting their data rate requirements, without affecting the AP selection result for the target user. This enables the proposed method to handle different numbers of users without the need for retraining. Results show that A-TCNN achieves a network throughput very close to that of the testing dataset, with a gap less than 3%. It is also proven that A-TCNN can obtain a network throughput comparable to two SOTA benchmarks, while reducing the runtime by up to three orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源