论文标题

在有铰接运动的情况下,基于自主地图集的超声采集

Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of Articulated Motion

论文作者

Jiang, Zhongliang, Gao, Yuan, Xie, Le, Navab, Nassir

论文摘要

机器人超声(US)成像旨在克服美国自由企业考试的一些局限性,例如难以保证操作员可重复性。但是,由于患者的解剖学和生理变化以及解剖下结构的相对运动,鲁棒性产生最佳轨迹以检查感兴趣的解剖学时,当他们构成明确的关节时,这是一项挑战。为了应对这一挑战,本文提出了一种基于视觉的方法,允许自动机器人美国肢体扫描。为此,使用带注释的血管结构的人臂的Atlas MRI模板用于产生轨迹并注册并将其投射到患者的皮肤表面上,以进行机器人的美国获得。为了有效地细分并准确地重建目标的3D容器,我们通过将通道注意模块纳入U-NET型神经网络中,利用连续美国框架中的空间连续性。自动轨迹生成方法对具有各种铰接关节角度的六名志愿者进行评估。在所有情况下,系统都可以成功地获取志愿者四肢计划的血管结构。对于一名志愿者,还提供了MRI扫描,可以评估美国图像中扫描动脉的平均半径,从而导致半径估计($ 1.2 \ pm0.05〜mm $)可与MRI地面真相相当($ 1.2 \ pm0.04〜mm $)。

Robotic ultrasound (US) imaging aims at overcoming some of the limitations of free-hand US examinations, e.g. difficulty in guaranteeing intra- and inter-operator repeatability. However, due to anatomical and physiological variations between patients and relative movement of anatomical substructures, it is challenging to robustly generate optimal trajectories to examine the anatomies of interest, in particular, when they comprise articulated joints. To address this challenge, this paper proposes a vision-based approach allowing autonomous robotic US limb scanning. To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories and register and project them onto patients' skin surfaces for robotic US acquisition. To effectively segment and accurately reconstruct the targeted 3D vessel, we make use of spatial continuity in consecutive US frames by incorporating channel attention modules into a U-Net-type neural network. The automatic trajectory generation method is evaluated on six volunteers with various articulated joint angles. In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs. For one volunteer the MRI scan was also available, which allows the evaluation of the average radius of the scanned artery from US images, resulting in a radius estimation ($1.2\pm0.05~mm$) comparable to the MRI ground truth ($1.2\pm0.04~mm$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源