论文标题

NIDN:纳米结构的神经逆设计

NIDN: Neural Inverse Design of Nanostructures

论文作者

Gómez, Pablo, Toftevaag, Håvard Hem, Bogen-Storø, Torbjørn, van Egmond, Derek Aranguren, Llorens, José M.

论文摘要

在最近的十年中,计算工具在材料设计中已成为中心,从而使成本降低的快速开发周期。机器学习工具尤其是光子学的增加。但是,从优化的角度来看,设计的麦克斯韦方程式的反转特别具有挑战性,需要复杂的软件。我们提出了一种创新的开源软件工具,称为纳米结构的神经逆设计(NIDN),该工具允许使用基于物理学的深度学习方法来设计复杂的,堆叠的材料纳米结构。我们执行基于梯度的神经网络训练,而不是无衍生化或数据驱动的优化或学习方法,我们可以根据其光谱特征直接优化材料及其结构。 NIDN支持两个不同的求解器:严格的耦合波分析和有限差分时间域方法。 NIDN的效用和有效性在几个合成示例以及1550 nm过滤器和抗反射涂层的设计上得到了证明。结果与实验基线,其他仿真工具和所需光谱特性相匹配。鉴于其在网络体系结构和麦克斯韦求解器以及开源的完整模块化,宽松的可用性,NIDN将能够在广泛的应用程序中支持计算材料设计过程。

In the recent decade, computational tools have become central in material design, allowing rapid development cycles at reduced costs. Machine learning tools are especially on the rise in photonics. However, the inversion of the Maxwell equations needed for the design is particularly challenging from an optimization standpoint, requiring sophisticated software. We present an innovative, open-source software tool called Neural Inverse Design of Nanostructures (NIDN) that allows designing complex, stacked material nanostructures using a physics-based deep learning approach. Instead of a derivative-free or data-driven optimization or learning method, we perform a gradient-based neural network training where we directly optimize the material and its structure based on its spectral characteristics. NIDN supports two different solvers, rigorous coupled-wave analysis and a finite-difference time-domain method. The utility and validity of NIDN are demonstrated on several synthetic examples as well as the design of a 1550 nm filter and anti-reflection coating. Results match experimental baselines, other simulation tools, and the desired spectral characteristics. Given its full modularity in regard to network architectures and Maxwell solvers as well as open-source, permissive availability, NIDN will be able to support computational material design processes in a broad range of applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源