论文标题

语言引导的面部动画通过recurrent stylegan发电机

Language-Guided Face Animation by Recurrent StyleGAN-based Generator

论文作者

Hang, Tiankai, Yang, Huan, Liu, Bei, Fu, Jianlong, Geng, Xin, Guo, Baining

论文摘要

关于语言引导的图像操纵的最新著作在提供丰富的语义方面表现出很大的语言力量,尤其是对于面部图像。但是,其他自然信息,语言中的动作较少。在本文中,我们利用运动信息并研究一项新颖的任务,语言引导的面部动画,旨在在语言的帮助下对静态面部图像进行动画。为了更好地利用语言的语义和动作,我们提出了一个简单而有效的框架。具体而言,我们提出了一个经常性运动生成器,以从语言中提取一系列语义和运动信息,并将其与视觉信息一起提供给预训练的样式,以生成高质量的框架。为了优化所提出的框架,提出了三个精心设计的损失功能,包括正规化损失,以保持面部身份,路径长度正规化损失以确保运动平滑度以及对比损失,以在一个模型中使用各种语言指导启用视频综合。对不同领域的定性和定量评估进行了广泛的实验(\ textit {ef。,}人脸,动漫的脸和狗的脸)证明了我们模型在通过语言指导中从一个静止图像中从一个静止图像中产生高质量和现实视频的优越性。代码将在https://github.com/tiankaihang/language-guided-animation.git上找到。

Recent works on language-guided image manipulation have shown great power of language in providing rich semantics, especially for face images. However, the other natural information, motions, in language is less explored. In this paper, we leverage the motion information and study a novel task, language-guided face animation, that aims to animate a static face image with the help of languages. To better utilize both semantics and motions from languages, we propose a simple yet effective framework. Specifically, we propose a recurrent motion generator to extract a series of semantic and motion information from the language and feed it along with visual information to a pre-trained StyleGAN to generate high-quality frames. To optimize the proposed framework, three carefully designed loss functions are proposed including a regularization loss to keep the face identity, a path length regularization loss to ensure motion smoothness, and a contrastive loss to enable video synthesis with various language guidance in one single model. Extensive experiments with both qualitative and quantitative evaluations on diverse domains (\textit{e.g.,} human face, anime face, and dog face) demonstrate the superiority of our model in generating high-quality and realistic videos from one still image with the guidance of language. Code will be available at https://github.com/TiankaiHang/language-guided-animation.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源