论文标题

量子完整交叉点上的Bi-Frobenius代数结构

Bi-Frobenius algebra structure on quantum complete intersections

论文作者

Jin, Hai, Zhang, Pu

论文摘要

本文是在量子完整交叉点上寻找Bi-Frobenius代数结构。我们找到一类的合作,以便如果$ \ sqrt {-1} \在k $中,那么量子完整的交集将变成bi-frobenius algebra,并且仅当所有参数$ q_ {ij} = ij} = \ pm pm 1 $时,且仅当所有参数$ q_ Q_ {ij} = \ pm pm 1 $。另外,可以证明,如果$ \ sqrt {-1} \在k $中,则两个变量中的量子外部代数在且仅当参数$ q = \ pm 1 $时,就会允许Bi-Frobenius代数结构。虽然如果$ \ sqrt {-1} \ notin k $,则具有两个变量的外部代数不承认Bi-Frobenius代数结构。由于特征零字段上的量子完全交点不承认任何双重结构,因此这给出了一类Bi-frobenius代数的示例,这些代数不是双齿的(因此不hopf代数)。另一方面,量子外部代数在且仅当$ {\ rm char} \ k = 2 $时接受了bialgebra结构。在交换性的情况下,给出了其他两项在完全交叉环环上的合并,以便它们接纳非晶状体二型纤维纤维代数代数结构。

This paper is to look for bi-Frobenius algebra structures on quantum complete intersections. We find a class of comultiplications, such that if $\sqrt{-1}\in k$, then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters $q_{ij} = \pm 1$. Also, it is proved that if $\sqrt{-1}\in k$ then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter $q = \pm 1$. While if $\sqrt{-1}\notin k$, then the exterior algebra with two variables admits no bi-Frobenius algebra structures. Since a quantum complete intersection over a field of characteristic zero admits no bialgebra structures, this gives a class of examples of bi-Frobenius algebras which are not bialgebras (and hence not Hopf algebras). On the other hand, a quantum exterior algebra admits a bialgebra structure if and only if ${\rm char} \ k = 2$. In commutative case, other two comultiplications on complete intersection rings are given, such that they admit non-isomorphic bi-Frobenius algebra structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源