论文标题
基于学习的数字语义通信系统的联合编码调制
Learning Based Joint Coding-Modulation for Digital Semantic Communication Systems
论文作者
论文摘要
在基于学习的语义沟通中,神经网络在传统沟通系统中取代了不同的构件。但是,数字调制仍然是神经网络的挑战。基于神经网络的数字调制的固有机制是将神经网络编码器的连续输出映射到离散的星座符号中,这是一个不可差的函数,无法使用现有的梯度下降算法进行训练。为了克服这一挑战,在本文中,我们为使用BPSK调制的数字语义通信制定了联合编码调节方案。在我们的方法中,神经网络输出了每个星座点的可能性,而不是具有混凝土映射。因此,使用了随机代码而不是确定性代码,该代码在每个星座上都有可能的符号保留更多信息。联合编码调制设计可以与频道状态相匹配,从而提高数字语义通信的性能。实验结果表明,我们的方法在广泛的SNR上的语义通信中的现有数字调制方法优于现有的数字调制方法,并且低SNR制度中的基于神经网络的模拟调制方法优于神经网络的模拟调制方法。
In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mechanism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.