论文标题

Riemannian指标空间的$ l^2 $ - cat $(0)$:较短的证明

The $L^2$-completion of the space of Riemannian metrics is CAT$(0)$: a shorter proof

论文作者

Cavallucci, Nicola

论文摘要

我们以一种更简单的方式来谴责布莱恩·克拉克(Brian Clarke)的结果:相对于$ l^2 $ distance的riemannian指标的完成空间是cat $(0)$。特别是我们表明,此完成是从标准概率空间到固定CAT $(0)$空间的$ l^2 $图的均值。

We reprove in an easier way a result of Brian Clarke: the completion of the space of Riemannian metrics of a compact, orientable smooth manifold with respect to the $L^2$-distance is CAT$(0)$. In particular we show that this completion is isometric to the space of $L^2$-maps from a standard probability space to a fixed CAT$(0)$ space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源