论文标题
MIMO探测器的自动混合精液量化
Automatic Hybrid-Precision Quantization for MIMO Detectors
论文作者
论文摘要
在无线系统的设计中,量化在硬件中起着至关重要的作用,这直接影响了区域效率和能源效率。作为一种有利的技术,多输入多输出(MIMO)的广泛应用在很大程度上依赖于有效的实现,可以平衡性能和复杂性。但是,大多数现有检测器均匀地量化了所有变量,从而导致冗余性高和柔韧性低。需要专业知识和努力,深入量身定量的量化通常要求付出高昂的成本,而常规的MIMO探测器不考虑。在本文中,提出了一个名为“自动混合精液量化”(AHPQ)的一般框架,并用两个部分提出:由概率密度函数(PDF)确定的积分量化,以及通过深度强化学习(DRL)的分数量化。 AHPQ是自动的,在找出一组算法参数的良好量化方面表现出很高的效率。对于大约消息传递(AMP)检测器,AHPQ的平均量度比统一量化(UQ)的平均宽度低高于$ 58.7 \%$,几乎没有表现牺牲。 AHPQ的可行性已通过使用$ 65 $ NM CMOS技术的实施来验证。与其UQ对应物相比,AHPQ的售价为$ 2.97 \ Times $更高的吞吐量比(tar),$ 19.3 \%$ $ $ $ $ $ $ $ $。此外,通过节点压缩和降低强度,AHPQ检测器在吞吐量($ 17.92 $ gb/s)和能源效率($ 7.93 $ pj/b)中都优于最先进的(SOA)。提出的AHPQ框架也适用于其他数字信号处理算法。
In the design of wireless systems, quantization plays a critical role in hardware, which directly affects both area efficiency and energy efficiency. Being an enabling technique, the wide applications of multiple-input multiple-output (MIMO) heavily relies on efficient implementations balancing both performance and complexity. However, most of the existing detectors uniformly quantize all variables, resulting in high redundancy and low flexibility. Requiring both expertise and efforts, an in-depth tailored quantization usually asks for prohibitive costs and is not considered by conventional MIMO detectors. In this paper, a general framework named the automatic hybrid-precision quantization (AHPQ) is proposed with two parts: integral quantization determined by probability density function (PDF), and fractional quantization by deep reinforcement learning (DRL). Being automatic, AHPQ demonstrates high efficiency in figuring out good quantizations for a set of algorithmic parameters. For the approximate message passing (AMP) detector, AHPQ achieves up to $58.7\%$ lower average bitwidth than the unified quantization (UQ) one with almost no performance sacrifice. The feasibility of AHPQ has been verified by implementation with $65$ nm CMOS technology. Compared with its UQ counterpart, AHPQ exhibits $2.97\times$ higher throughput-to-area ratio (TAR) with $19.3\%$ lower energy dissipation. Moreover, by node compression and strength reduction, the AHPQ detector outperforms the state-of-the-art (SOA) in both throughput ($17.92$ Gb/s) and energy efficiency ($7.93$ pJ/b). The proposed AHPQ framework is also applicable for other digital signal processing algorithms.