论文标题
粒子物理中卷积图网络应用的分区池
Partition Pooling for Convolutional Graph Network Applications in Particle Physics
论文作者
论文摘要
卷积图网络用于粒子物理学,以进行有效的事件重建和分类。但是,如果应用于传感器级数据,则可以通过现代粒子探测器中使用的大量传感器来限制它们的性能。我们提出了一个合并方案,该方案使用分区来在图形上创建汇总内核,类似于图像上的合并。分区池可用于采用粒子物理中图神经网络应用的成功图像识别体系结构。减少的计算资源允许更深的网络和更广泛的超参数优化。为了显示其适用性,我们构建了一个具有分区池的卷积图网络,该网络重建了理想化的中微子检测器的模拟相互作用顶点。汇总网络的性能提高了,并且不容易拟合过度,而不是相似的网络而没有合并。较低的资源要求允许建立更深层次的网络,并进一步提高性能。
Convolutional graph networks are used in particle physics for effective event reconstructions and classifications. However, their performances can be limited by the considerable amount of sensors used in modern particle detectors if applied to sensor-level data. We present a pooling scheme that uses partitioning to create pooling kernels on graphs, similar to pooling on images. Partition pooling can be used to adopt successful image recognition architectures for graph neural network applications in particle physics. The reduced computational resources allow for deeper networks and more extensive hyperparameter optimizations. To show its applicability, we construct a convolutional graph network with partition pooling that reconstructs simulated interaction vertices for an idealized neutrino detector. The pooling network yields improved performance and is less susceptible to overfitting than a similar network without pooling. The lower resource requirements allow the construction of a deeper network with further improved performance.