论文标题
非线性外壳的新各向异性弯曲模型:与现有模型和iSOEDENEDINED有限元实现的比较
A new anisotropic bending model for nonlinear shells: Comparison with existing models and isogeometric finite element implementation
论文作者
论文摘要
提出了直接以表面形式配方的壳的新的非线性热弹性弯曲模型,并与四个突出使用的弯曲模型进行了比较。通过一组基本的非线性弯曲测试用例,分析了每个模型的应力和力矩。只有提出的弯曲模型通过所有测试用例,而其他弯曲模型要么失败或仅通过测试用例进行小变形。提出的新弯曲模型可以处理大变形和最初弯曲的表面。它基于主曲线及其在初始配置中的方向,因此可以沿着这些方向具有不同的弯曲模量。这些特征使其在对给定材料进行建模方面具有灵活性,而它并不遭受现有弯曲模型的病理影响。此外,通过四个经典基准示例和一个联系人示例,通过四个经典基准示例对弯曲模型进行计算。由于基本的壳理论基于基尔乔夫 - 爱运动学,因此使用同几年的NURBS形状函数来离散壳表面。还提供了提出的新模型的线性化和有效的有限元实现。
A new nonlinear hyperelastic bending model for shells formulated directly in surface form is presented, and compared to four prominently used bending models. Through an essential set of elementary nonlinear bending test cases, the stresses and moments of each model are examined analytically. Only the proposed bending model passes all the test cases while the other bending models either fail or only pass the test cases for small deformations. The proposed new bending model can handle large deformations and initially curved surfaces. It is based on the principal curvatures and their directions in the initial configuration, and it thus can have different bending moduli along those directions. These characteristics make it flexible in modeling a given material, while it does not suffer from the pathologies of existing bending models. Further, the bending models are compared computationally through four classical benchmark examples and one contact example. As the underlying shell theory is based on Kirchhoff-Love kinematics, isogeometric NURBS shape functions are used to discretize the shell surface. The linearization and efficient finite element implementation of the proposed new model are also provided.