论文标题
带有回忆录的扩散后者方程的全球动态
Global Dynamics of Diffusive Hindmarsh-Rose Equations with Memristors
论文作者
论文摘要
本文研究了以备忘录作为新建议的神经元动力学模型的扩散后摩尔斯方程的全局动力学。我们通过均匀的分析估计值证明了全局吸引子在溶液中的存在性和规律性,该估计通过kolmogorov-riesz定理的方法,显示了较高阶段的耗散性质和溶液半节的渐近紧凑特性。模型参数明确表达了在状态空间和常规空间中分别包含该全局吸引子的区域的定量界限。
Global dynamics of the diffusive Hindmarsh-Rose equations with memristor as a new proposed model for neuron dynamics are investigated in this paper. We prove the existence and regularity of a global attractor for the solution semiflow through uniform analytic estimates showing the higher-order dissipative property and the asymptotically compact characteristics of the solution semiflow by the approach of Kolmogorov-Riesz theorem. The quantitative bounds of the regions containing this global attractor respectively in the state space and in the regular space are explicitly expressed by the model parameters.