论文标题

用单位正方形的最低点覆盖点

Minimum Ply Covering of Points with Unit Squares

论文作者

Durocher, Stephane, Keil, J. Mark, Mondal, Debajyoti

论文摘要

鉴于欧几里得飞机中的轴平行单位平方的一组$ p $和一套$ u $ $ u $,带有$ u $ $ u $的$ p $的最低覆盖率是$ u $的子集,$ u $的子集涵盖$ p $,并最大程度地减少了共享一个共享的平方数量,称为共同的互动,称为最低$ P $与$ u $ $ u $ $ $ $ $。 Biedl等。 [计算。 GEOM。,94:101712,2020]表明,通过一组轴平行单位正方形确定一组点的最小覆盖码为NP- hard,并给出了一个多项式时间2-辅助算法的实例,最小封面盖的最小封面数为恒定。当最小覆盖号为$ω(1)$时,是否存在多项式近似算法存在问题。我们解决这个开放的问题,并提出一个多项式$(8+ \ varepsilon)$ - 对于总体问题的近似算法,对于每个固定的$ \ varepsilon> 0 $。

Given a set $P$ of points and a set $U$ of axis-parallel unit squares in the Euclidean plane, a minimum ply cover of $P$ with $U$ is a subset of $U$ that covers $P$ and minimizes the number of squares that share a common intersection, called the minimum ply cover number of $P$ with $U$. Biedl et al. [Comput. Geom., 94:101712, 2020] showed that determining the minimum ply cover number for a set of points by a set of axis-parallel unit squares is NP-hard, and gave a polynomial-time 2-approximation algorithm for instances in which the minimum ply cover number is constant. The question of whether there exists a polynomial-time approximation algorithm remained open when the minimum ply cover number is $ω(1)$. We settle this open question and present a polynomial-time $(8+\varepsilon)$-approximation algorithm for the general problem, for every fixed $\varepsilon>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源