论文标题

通过分布式粒子群优化的实用二阶潜在因子模型

A Practical Second-order Latent Factor Model via Distributed Particle Swarm Optimization

论文作者

Wang, Jialiang, Zhong, Yurong, Li, Weiling

论文摘要

潜在因子(LF)模型可有效地通过低级矩阵近似来表示高维和稀疏(HID)数据。 Hessian无(HF)优化是利用LF模型目标函数的二阶信息的有效方法,并已用于优化二阶LF(SLF)模型。但是,SLF模型的低级表示能力在很大程度上取决于其多个超参数。确定这些超参数是耗时的,它在很大程度上降低了SLF模型的实用性。为了解决这个问题,在这项工作中提出了实用的SLF(PSLF)模型。它通过分布式粒子群优化器(DPSO)实现了超参数自适应,该粒子群(DPSO)无梯度且并行化。对真实HID数据集的实验表明,PSLF模型比最新模型在数据表示能力中具有竞争优势。

Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a practical SLF (PSLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that PSLF model has a competitive advantage over state-of-the-art models in data representation ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源