论文标题

PRIF:基于射线的主隐式函数

PRIF: Primary Ray-based Implicit Function

论文作者

Feng, Brandon Yushan, Zhang, Yinda, Tang, Danhang, Du, Ruofei, Varshney, Amitabh

论文摘要

我们引入了一种称为基于射线的隐式函数(PRIF)的新的隐式形状表示。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观测值完成形状完成,相机姿势估计的逆渲染以及颜色的神经渲染。

We introduce a new implicit shape representation called Primary Ray-based Implicit Function (PRIF). In contrast to most existing approaches based on the signed distance function (SDF) which handles spatial locations, our representation operates on oriented rays. Specifically, PRIF is formulated to directly produce the surface hit point of a given input ray, without the expensive sphere-tracing operations, hence enabling efficient shape extraction and differentiable rendering. We demonstrate that neural networks trained to encode PRIF achieve successes in various tasks including single shape representation, category-wise shape generation, shape completion from sparse or noisy observations, inverse rendering for camera pose estimation, and neural rendering with color.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源