论文标题

在代表部分拉丁广场的国际象棋板上对子系统的分析(第2部分)。

Analysis of subsystems with rooks on a chess-board representing a partial Latin square (Part 2.)

论文作者

Jónás, Béla

论文摘要

部分拉丁订单$ n $的部分拉丁广场可以由$ 3 $维的棋盘大小$ n \ times n \ times n $,最多最多$ n^2 $ n^2 $ nontakearing Rooks。在拉丁方块中,子系统及其最遥远的伴侣在一起具有与其能力一样多的菜。这意味着要完成部分拉丁正方形的简单容量条件,这实际上是Cruse对​​于特征矩阵的必要条件。安德森·希尔顿(Andersen-Hilton)证明,除了某些列出的案例外,如果仅包含$ n $符号,则可以完成订单$ n $的PL。安德森(Andersen)以$ n+1 $的符号证明了这一点,列出了要排除的案例。确定可以将$ n $ n $或$ n+1 $ roks重载的国际象棋棋盘结构,因此,如果满足容量条件,则可以从最多$ n+1 $ nontake的Rook衍生出的PLS,最多可确切地完成。在拉丁广场的一层中,一对远程夫妇的两个子系统处于平衡状态。因此,可以制定完成层的必要条件,即平衡条件。对于LSC,棋盘的每个1维子空间都完全包含一个Rook。因此,对于源自部分拉丁正方形的PLSC,我们检查了某些1维子空间集,因为它们表明了缺失的Rooks数量。

A partial Latin square of order $n$ can be represented by a $3$-dimensional chess-board of size $n\times n\times n$ with at most $n^2$ non-attacking rooks. In Latin squares, a subsystem and its most distant mate together have as many rooks as their capacity. That implies a simple capacity condition for the completion of partial Latin squares which is in fact the Cruse's necessary condition for characteristic matrices. Andersen-Hilton proved that, except for certain listed cases, a PLS of order $n$ can be completed if it contains only $n$ symbols. Andersen proved it for $n+1$ symbols, listing the cases to be excluded. Identifying the structures of the chess-board that can be overloaded with $n$ or $n+1$ rooks, it follows that a PLS derived from a chess-board with at most $n+1$ non-attacking rooks can be completed exactly if it satisfies the capacity condition. In a layer of a Latin square, two subsystems of a remote couple are in balance. Thus, a necessary condition for completion of a layer can be formulated, the balance condition. For an LSC, each 1-dimensional subspace of the chess-board contains exactly one rook. Consequently, for the PLSCs derived from partial Latin squares, we examine certain sets of 1-dimensional subspaces because they indicate the number of missing rooks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源