论文标题

在法院裁决中采取法律论点

Mining Legal Arguments in Court Decisions

论文作者

Habernal, Ivan, Faber, Daniel, Recchia, Nicola, Bretthauer, Sebastian, Gurevych, Iryna, Döhmann, Indra Spiecker genannt, Burchard, Christoph

论文摘要

自论证挖掘领域成立以来,在法律话语中识别,分类和分析的论点一直是研究的重要领域。但是,自然语言处理(NLP)研究人员的模型模型与法院决策中的注释论点与法律专家理解和分析法律论证的方式之间存在重大差异。尽管计算方法通常将论点简化为通用前提和主张,但法律研究中的论点通常表现出丰富的类型,对于获得一般法律的特定案例和应用很重要。我们解决了这个问题,并做出了一些实质性的贡献,以推动该领域的前进。首先,我们在欧洲人权法院(ECHR)诉讼中为法律论证设计了新的注释计划,该计划深深植根于法律论证研究的理论和实践中。其次,我们编译和注释了373项法院判决(230万个令牌和15K注释的论点跨度)的大量语料库。最后,我们培训一个挖掘模型,该模型胜过法律NLP领域中最先进的模型,并提供了彻底的基于专家的评估。所有数据集和源代码均可在https://github.com/trusthlt/mining-legal-arguments的开放lincenses下找到。

Identifying, classifying, and analyzing arguments in legal discourse has been a prominent area of research since the inception of the argument mining field. However, there has been a major discrepancy between the way natural language processing (NLP) researchers model and annotate arguments in court decisions and the way legal experts understand and analyze legal argumentation. While computational approaches typically simplify arguments into generic premises and claims, arguments in legal research usually exhibit a rich typology that is important for gaining insights into the particular case and applications of law in general. We address this problem and make several substantial contributions to move the field forward. First, we design a new annotation scheme for legal arguments in proceedings of the European Court of Human Rights (ECHR) that is deeply rooted in the theory and practice of legal argumentation research. Second, we compile and annotate a large corpus of 373 court decisions (2.3M tokens and 15k annotated argument spans). Finally, we train an argument mining model that outperforms state-of-the-art models in the legal NLP domain and provide a thorough expert-based evaluation. All datasets and source codes are available under open lincenses at https://github.com/trusthlt/mining-legal-arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源