论文标题

UNI6DV2:6D姿势估计的消除噪声

Uni6Dv2: Noise Elimination for 6D Pose Estimation

论文作者

Sun, Mingshan, Zheng, Ye, Bao, Tianpeng, Chen, Jianqiu, Jin, Guoqiang, Wu, Liwei, Zhao, Rui, Jiang, Xiaoke

论文摘要

UNI6D是使用统一的骨干网络从RGB和深度图像中提取功能的第一种6D姿势估计方法。我们发现UNI6D性能限制的主要原因是实例外部和实例 - 内线噪声。 Uni6d的简单管道设计固有地从接收场中的背景像素引入了实例 - 外部噪声,同时忽略了输入深度数据中的实例 - 内线噪声。在本文中,我们提出了一种两步的denoising方法,用于处理UNI6D中上述噪声。为了减少非实施区域的噪声,第一步中使用实例分割网络来裁剪和掩盖实例。在第二步中,提出了轻巧的深度降级模块,以校准深度特征,然后再将其馈入姿势回归网络。广泛的实验表明,我们的UNI6DV2可靠,稳健地消除了噪声,在不牺牲过多推理效率的情况下优于Uni6d。它还减少了对需要昂贵标签的注释真实数据的需求。

Uni6D is the first 6D pose estimation approach to employ a unified backbone network to extract features from both RGB and depth images. We discover that the principal reasons of Uni6D performance limitations are Instance-Outside and Instance-Inside noise. Uni6D's simple pipeline design inherently introduces Instance-Outside noise from background pixels in the receptive field, while ignoring Instance-Inside noise in the input depth data. In this paper, we propose a two-step denoising approach for dealing with the aforementioned noise in Uni6D. To reduce noise from non-instance regions, an instance segmentation network is utilized in the first step to crop and mask the instance. A lightweight depth denoising module is proposed in the second step to calibrate the depth feature before feeding it into the pose regression network. Extensive experiments show that our Uni6Dv2 reliably and robustly eliminates noise, outperforming Uni6D without sacrificing too much inference efficiency. It also reduces the need for annotated real data that requires costly labeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源