论文标题

恒星形成中的磁场特性:对其分析方法和解释的综述

Magnetic field properties in star formation: a review of their analysis methods and interpretation

论文作者

Liu, Junhao, Zhang, Qizhou, Qiu, Keping

论文摘要

粉尘粒和分子光谱的线性极化发射是星际介质和分子云中磁场拓扑的有效探针。长期存在的Davis-Chandrasekhar-Fermi(DCF)方法和最近开发的相对取向分析(HRO)分析的直方图和极化强度梯度(KTH)方法被广泛用于评估基于从观测值所涉及的现场方向的磁场中磁场在恒星形成中的动态作用。我们回顾这些方法的进步和局限性,并总结了它们对观察的应用。 DCF方法(包括其各种变体)的数值测试表明,其最大的不确定性可能来自能量平台的假设,应通过模拟和观察结果对其进行进一步校准。我们建议特定观察的有序和湍流磁场是所考虑区域的局部特性。使用DCF估计对极化观测值的分析表明,磁性偏度至关键和平均的tone toper-super-alfvénic团块/核心/核心在亚临界云中形成。由于较高的柱密度,高质量恒星形成区域可能比其低质量对应物更为主导。观察性HRO研究清楚地表明,磁场和密度结构之间的优先相对方向从平行到垂直的圆柱密度变化,这与模拟结合,这表明恒星形成在反式to-ub-alfvénic云中正在进行中。在高柱密度下,可能会从垂直线到随机对​​准有一个可能的过渡。使用KTH方法的观察性研究结果与HRO和DCF研究的研究广泛一致。

Linearly polarized emission from dust grains and molecular spectroscopy is an effective probe of the magnetic field topology in the interstellar medium and molecular clouds. The longstanding Davis-Chandrasekhar-Fermi (DCF) method and the recently developed Histogram of Relative Orientations (HRO) analysis and the polarization-intensity gradient (KTH) method are widely used to assess the dynamic role of magnetic fields in star formation based on the plane-of-sky component of field orientations inferred from the observations. We review the advances and limitations of these methods and summarize their applications to observations. Numerical tests of the DCF method, including its various variants, indicate that its largest uncertainty may come from the assumption of energy equipartition, which should be further calibrated with simulations and observations. We suggest that the ordered and turbulent magnetic fields of particular observations are local properties of the considered region. An analysis of the polarization observations using DCF estimations suggests that magnetically trans-to-super-critical and averagely trans-to-super-Alfvénic clumps/cores form in sub-critical clouds. High-mass star-forming regions may be more gravity-dominant than their low-mass counterparts due to higher column density. The observational HRO studies clearly reveal that the preferential relative orientation between the magnetic field and density structures changes from parallel to perpendicular with increasing column densities, which, in conjunction with simulations, suggests that star formation is ongoing in trans-to-sub-Alfvénic clouds. There is a possible transition back from perpendicular to random alignment at higher column densities. Results from observational studies using the KTH method broadly agree with those of the HRO and DCF studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源