论文标题

Cartier操作员在Artin-Schreier封面上的权力

Powers of the Cartier operator on Artin-Schreier covers

论文作者

Groen, Steven R.

论文摘要

积极特征的曲线具有卡地亚操作员在其常规差异空间上作用。曲线的$ number被定义为卡地亚操作员内核的尺寸。在\ cite {bocaasc}中,Booher和Cais使用了融学理论的方法,以$ numbers of Artin-Schreier的封面给出了界限。在本文中,该方法被推广到卡地亚操作员的任意权力,从而为内核的维度提供了界限。这些边界对Artin-Schreier封面的Ekedahl-oort类型产生了新的限制。

Curves in positive characteristic have a Cartier operator acting on their space of regular differentials. The $a$-number of a curve is defined to be the dimension of the kernel of the Cartier operator. In \cite{BoCaASc}, Booher and Cais used a sheaf-theoretic approach to give bounds on the $a$-numbers of Artin-Schreier covers. In this paper, that approach is generalized to arbitrary powers of the Cartier operator, yielding bounds for the dimension of the kernel. These bounds give new restrictions on the Ekedahl-Oort type of Artin-Schreier covers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源