论文标题

完整图上的多源入侵渗透

Multi-source invasion percolation on the complete graph

论文作者

Addario-Berry, Louigi, Barrett, Jordan

论文摘要

我们考虑在随机加权完整图$ k_n $上的入侵渗透,从某种数字$ k(n)$的不同源顶点开始。该过程的结果是由$ k(n)$树组成的森林,每个树木完全包含一个来源。令$ m_n $为这森林中最大的树的大小。 Logan,Molloy和Pralat(Arxiv:1806.10975)证明,如果$ k(n)/n^{1/3} \ to 0 $ to $ the $ m_n/n \ to $ m_n/n \至1 $。在本文中,我们证明了一个互补的结果:如果$ k(n)/n^{1/3} \ to \ infty $,则$ m_n/n \ to 0 $ to in Boare。这确立了在$ k(n)\ asymp n^{1/3} $左右的入侵渗透森林结构中存在相变的存在。 我们的论点依赖于入侵渗透与临界渗透之间的联系,以及多源入侵渗透与大小不同的源集之间的耦合。证明的很大一部分是专门的,表明,在大可能性上,在大型随机二进制树上的一定碎片过程没有宏观尺寸的组成部分。

We consider invasion percolation on the randomly-weighted complete graph $K_n$, started from some number $k(n)$ of distinct source vertices. The outcome of the process is a forest consisting of $k(n)$ trees, each containing exactly one source. Let $M_n$ be the size of the largest tree in this forest. Logan, Molloy and Pralat (arXiv:1806.10975) proved that if $k(n)/n^{1/3} \to 0$ then $M_n/n \to 1$ in probability. In this paper we prove a complementary result: if $k(n)/n^{1/3} \to \infty$ then $M_n/n \to 0$ in probability. This establishes the existence of a phase transition in the structure of the invasion percolation forest around $k(n) \asymp n^{1/3}$. Our arguments rely on the connection between invasion percolation and critical percolation, and on a coupling between multi-source invasion percolation with differently-sized source sets. A substantial part of the proof is devoted to showing that, with high probability, a certain fragmentation process on large random binary trees leaves no components of macroscopic size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源