论文标题
非零Littlewood-Richardson系数的下限和上限
Lower and Upper Bounds for Nonzero Littlewood-Richardson Coefficients
论文作者
论文摘要
给定偏斜图$γ/λ$,我们确定了一组下层和上限,分区$μ$对于Littlewood-Richards系数必须满足$ C^γ_{λ,μ}> 0 $。我们的算法取决于$ c^γ_{λ,μ} $作为形状$γ/λ$和内容$μ$的Littlewood-Richardson Tableau的数量,并在分区中使用(广义的)优势顺序作为主要成分。
Given a skew diagram $γ/λ$, we determine a set of lower and upper bounds that a partition $μ$ must satisfy for Littlewood-Richards coefficients $c^γ_{λ,μ}>0$. Our algorithm depends on the characterization of $c^γ_{λ,μ}$ as the number of Littlewood-Richardson tableau of shape $γ/λ$ and content $μ$ and uses the (generalized) dominance order on partitions as the main ingredient.