论文标题
全球先验指导的调制网络,用于关节超分辨率和反向音调映射
Global Priors Guided Modulation Network for Joint Super-Resolution and Inverse Tone-Mapping
论文作者
论文摘要
联合超分辨率和反音调映射(SR-ITM)旨在提高在分辨率和动态范围内具有质量缺陷的视频的视觉质量。当使用4K高动态范围(HDR)电视来观看低分辨率标准动态范围(LR SDR)视频时,就会出现此问题。以前依赖于学习本地信息的方法通常在保留颜色符合性和远程结构相似性方面做得很好,从而导致不自然的色彩过渡和纹理伪像。为了应对这些挑战,我们为联合SR-ITM提出了一个全球先验指导的调制网络(GPGMNET)。特别是,我们设计了一个全球先验提取模块(GPEM),以提取先验和结构相似性,分别对ITM和SR任务有益。为了进一步利用全球先验并保留空间信息,我们设计了多个全球先验的指导空间调制块(GSMBS),其中有一些用于中间特征调制的参数,其中调制参数是由共享的全球先验者生成的。通过这些精心设计的设计,GPGMNET可以通过较低的计算复杂性实现更高的视觉质量。广泛的实验表明,我们提出的GPGMNET优于最新方法。具体而言,我们提出的模型在PSNR中超过了0.64 dB的最新模型,其中69 $ \%$ $ $ $ $ \%$ \ times $ speedup。该代码将很快发布。
Joint super-resolution and inverse tone-mapping (SR-ITM) aims to enhance the visual quality of videos that have quality deficiencies in resolution and dynamic range. This problem arises when using 4K high dynamic range (HDR) TVs to watch a low-resolution standard dynamic range (LR SDR) video. Previous methods that rely on learning local information typically cannot do well in preserving color conformity and long-range structural similarity, resulting in unnatural color transition and texture artifacts. In order to tackle these challenges, we propose a global priors guided modulation network (GPGMNet) for joint SR-ITM. In particular, we design a global priors extraction module (GPEM) to extract color conformity prior and structural similarity prior that are beneficial for ITM and SR tasks, respectively. To further exploit the global priors and preserve spatial information, we devise multiple global priors guided spatial-wise modulation blocks (GSMBs) with a few parameters for intermediate feature modulation, in which the modulation parameters are generated by the shared global priors and the spatial features map from the spatial pyramid convolution block (SPCB). With these elaborate designs, the GPGMNet can achieve higher visual quality with lower computational complexity. Extensive experiments demonstrate that our proposed GPGMNet is superior to the state-of-the-art methods. Specifically, our proposed model exceeds the state-of-the-art by 0.64 dB in PSNR, with 69$\%$ fewer parameters and 3.1$\times$ speedup. The code will be released soon.