论文标题
使用监督机器学习的基于WiFi的距离估算
WiFi Based Distance Estimation Using Supervised Machine Learning
论文作者
论文摘要
近年来,WiFi成为在室内找到一个人或设备的主要信息来源。将RSSI值作为具有已知位置的参考测量值(称为WiFi指纹识别),通常用于文献中出现的各种定位方法和算法中。但是,测量给定的WiFi指纹组之间的空间距离受到选择的信号距离函数的选择,该信号距离函数用于将信号空间建模为地理空间距离。在这项研究中,作者提出了对机器学习的利用,以改善指纹之间的地理空间距离的估计。这项研究检查了从13个不同的开放数据集收集的数据,以提供广泛的表示,以针对任何室内环境中使用的通用模型。提出的新方法通过通过功能选择过程来检查一组常用的信号距离指标来提取数据特征,该过程包括特征分析和遗传算法。为了证明该研究的输出是独立的,所有模型均在培训和验证阶段以前排除的数据集上进行了测试。最后,使用各种评估指标比较了各种机器学习算法,包括能够将测试床扩展到现实世界中的未经请求的数据集。
In recent years WiFi became the primary source of information to locate a person or device indoor. Collecting RSSI values as reference measurements with known positions, known as WiFi fingerprinting, is commonly used in various positioning methods and algorithms that appear in literature. However, measuring the spatial distance between given set of WiFi fingerprints is heavily affected by the selection of the signal distance function used to model signal space as geospatial distance. In this study, the authors proposed utilization of machine learning to improve the estimation of geospatial distance between fingerprints. This research examined data collected from 13 different open datasets to provide a broad representation aiming for general model that can be used in any indoor environment. The proposed novel approach extracted data features by examining a set of commonly used signal distance metrics via feature selection process that includes feature analysis and genetic algorithm. To demonstrate that the output of this research is venue independent, all models were tested on datasets previously excluded during the training and validation phase. Finally, various machine learning algorithms were compared using wide variety of evaluation metrics including ability to scale out the test bed to real world unsolicited datasets.