论文标题
通过多视图深度学习分类来确定HEDP泡沫的质量
Determining HEDP Foams' Quality with Multi-View Deep Learning Classification
论文作者
论文摘要
高能量密度物理(HEDP)实验通常涉及在低密度泡沫内传播的动态波 - 前。这种效果会影响其密度,因此会影响其透明度。泡沫生产中的一个常见问题是产生有缺陷的泡沫。需要有关其维度和同质性的准确信息来对泡沫的质量进行分类。因此,这些参数使用3D测量激光共聚焦显微镜进行表征。对于每个泡沫,拍摄了五个图像:两张2D图像,代表顶部和底部表面泡沫平面以及3D扫描的侧面横截面的三张图像。专家必须通过图像集进行手动对泡沫质量进行分类的复杂,苛刻和疲惫的工作,然后才能确定是否可以在实验中使用泡沫。目前,质量具有两个二元级别的正常与缺陷。同时,通常需要专家来对正常缺陷的子类别进行分类,即有缺陷但可能需要实验的泡沫。由于不确定的判断,该子类是有问题的,这主要是直观的。在这项工作中,我们提出了一种新颖的最先进的多视图深度学习分类模型,该模型通过自动确定泡沫的质量分类并因此有助于专家来模仿物理学家的观点。我们的模型在上表面和下表面泡沫平面上达到了86 \%的精度,整个集合中达到了82 \%的精度,这表明了该问题的有趣启发式方法。这项工作中的一个显着附加价值是能够回归泡沫质量而不是二元推论,甚至可以在视觉上解释该决定。本工作中使用的源代码以及其他相关来源可在以下网址获得:https://github.com/scientific-computing-lab-nrcn/multi-view-foams.git
High energy density physics (HEDP) experiments commonly involve a dynamic wave-front propagating inside a low-density foam. This effect affects its density and hence, its transparency. A common problem in foam production is the creation of defective foams. Accurate information on their dimension and homogeneity is required to classify the foams' quality. Therefore, those parameters are being characterized using a 3D-measuring laser confocal microscope. For each foam, five images are taken: two 2D images representing the top and bottom surface foam planes and three images of side cross-sections from 3D scannings. An expert has to do the complicated, harsh, and exhausting work of manually classifying the foam's quality through the image set and only then determine whether the foam can be used in experiments or not. Currently, quality has two binary levels of normal vs. defective. At the same time, experts are commonly required to classify a sub-class of normal-defective, i.e., foams that are defective but might be sufficient for the needed experiment. This sub-class is problematic due to inconclusive judgment that is primarily intuitive. In this work, we present a novel state-of-the-art multi-view deep learning classification model that mimics the physicist's perspective by automatically determining the foams' quality classification and thus aids the expert. Our model achieved 86\% accuracy on upper and lower surface foam planes and 82\% on the entire set, suggesting interesting heuristics to the problem. A significant added value in this work is the ability to regress the foam quality instead of binary deduction and even explain the decision visually. The source code used in this work, as well as other relevant sources, are available at: https://github.com/Scientific-Computing-Lab-NRCN/Multi-View-Foams.git