论文标题

多体量子真空波动引擎

Many-body quantum vacuum fluctuation engines

论文作者

Jussiau, Étienne, Bresque, Léa, Auffèves, Alexia, Murch, Kater W., Jordan, Andrew N.

论文摘要

我们提出了一个多体量子发动机,该发动机由相互作用系统的纠缠基态和局部可分离状态之间的能量差提供动力。在相互作用的多体系统上进行局部能量测量可以产生激发的状态,从而通过本地反馈操作从中提取工作。这些测量结果揭示了在本地基础上全球基态的量子真空波动,并提供了运行发动机所需的能量。发动机周期的重置部分特别简单:相互作用的多体系统耦合到冷浴,并允许放松到其纠缠的基态。我们说明了关于两种多体系统的建议:一系列耦合Qubits和耦合的谐波振荡器网络。这些模型忠实地代表了费米子和骨气激发。在这两种情况下,都可以获得发动机的工作输出和效率的分析结果。一般而言,工作输出量表是涉及量子系统的数量,而效率将限制为常数。我们证明效率受“地方纠缠差距”的控制 - 全球基础状态与当地哈密顿局的最低能量特征态之间的能源差。在量子链的情况下,我们强调了量子相变对发动机性能的影响,因为在关键点的工作和效率急剧提高。在一维振荡器链的情况下,我们表明效率方法是随着耦合振荡器数量的增加,即使在有限的工作输出中也是如此。

We propose a many-body quantum engine powered by the energy difference between the entangled ground state of the interacting system and local separable states. Performing local energy measurements on an interacting many-body system can produce excited states from which work can be extracted via local feedback operations. These measurements reveal the quantum vacuum fluctuations of the global ground state in the local basis and provide the energy required to run the engine. The reset part of the engine cycle is particularly simple: The interacting many-body system is coupled to a cold bath and allowed to relax to its entangled ground state. We illustrate our proposal on two types of many-body systems: a chain of coupled qubits and coupled harmonic oscillator networks. These models faithfully represent fermionic and bosonic excitations, respectively. In both cases, analytical results for the work output and efficiency of the engine can be obtained. Generically, the work output scales as the number of quantum systems involved, while the efficiency limits to a constant. We prove the efficiency is controlled by the "local entanglement gap" -- the energy difference between the global ground state and the lowest energy eigenstate of the local Hamiltonian. In the qubit chain case, we highlight the impact of a quantum phase transition on the engine's performance as work and efficiency sharply increase at the critical point. In the case of a one-dimensional oscillator chain, we show the efficiency approaches unity as the number of coupled oscillators increases, even at finite work output.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源