论文标题

新药和股票市场:如何预测药物市场对临床试验公告的反应

New drugs and stock market: how to predict pharma market reaction to clinical trial announcements

论文作者

Budennyy, Semen, Kazakov, Alexey, Kovtun, Elizaveta, Zhukov, Leonid

论文摘要

制药公司在严格监管且高度危险的环境中运营,在该环境中,单张单击可以导致严重的财务影响。因此,临床试验结果的公告倾向于确定事件的未来过程,因此受到公众的密切监视。在这项工作中,我们为结果颁布对公共药品市场价值的影响提供了统计证据。尽管大多数工作都集中在回顾性影响分析上,但本研究旨在预测公告引起的股票价格变化的价值。为此,我们开发了一条管道,其中包括一个基于BERT的模型,用于提取公告的情感极性,一种用于预测预期回报的时间融合变压器,用于捕获事件关系的图形卷积网络以及预测价格变化的梯度提升。问题的挑战在于对正面和负面公告的反应固有不同的模式,反映在对负面新闻的更强烈,更明显的反应中。此外,在积极公告后,股票下降的现象肯定了价格行为的违反直觉。重要的是,我们发现了在预测框架内工作时应考虑的两个关键因素。第一个因素是该公司的药物组合规模,表明在小型药物多样化的情况下,公告的敏感性更大。第二个是与同一公司或诺斯科有关的事件的网络效应。所有发现和见解都是根据最大的FDA(食品药品监督管理局)公告数据集获得的,该数据集由过去五年中681家公司的5436个临床试验公告组成。

Pharmaceutical companies operate in a strictly regulated and highly risky environment in which a single slip can lead to serious financial implications. Accordingly, the announcements of clinical trial results tend to determine the future course of events, hence being closely monitored by the public. In this work, we provide statistical evidence for the result promulgation influence on the public pharma market value. Whereas most works focus on retrospective impact analysis, the present research aims to predict the numerical values of announcement-induced changes in stock prices. For this purpose, we develop a pipeline that includes a BERT-based model for extracting sentiment polarity of announcements, a Temporal Fusion Transformer for forecasting the expected return, a graph convolution network for capturing event relationships, and gradient boosting for predicting the price change. The challenge of the problem lies in inherently different patterns of responses to positive and negative announcements, reflected in a stronger and more pronounced reaction to the negative news. Moreover, such phenomenon as the drop in stocks after the positive announcements affirms the counterintuitiveness of the price behavior. Importantly, we discover two crucial factors that should be considered while working within a predictive framework. The first factor is the drug portfolio size of the company, indicating the greater susceptibility to an announcement in the case of small drug diversification. The second one is the network effect of the events related to the same company or nosology. All findings and insights are gained on the basis of one of the biggest FDA (the Food and Drug Administration) announcement datasets, consisting of 5436 clinical trial announcements from 681 companies over the last five years.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源