论文标题
通过重新采样减少实验社交网络中的偏差扩增
Bias amplification in experimental social networks is reduced by resampling
论文作者
论文摘要
人们认为,大规模的社交网络通过扩大人们的偏见来促进两极分化。但是,这些技术的复杂性使得难以确定负责的机制并评估缓解策略。在这里,我们在受控的实验室条件下显示,通过社交网络传输信息会扩大对简单的感知决策任务的动机偏见。大型行为实验的参与者表明,当社交网络相对于社会参与者的一部分,在40个独立发展的人群中,社交网络的一部分是有偏见的决策率。利用机器学习和贝叶斯统计的技术,我们确定了对内容选择算法的简单调整,该算法预测可减轻偏置放大。该算法从个人网络中生成了一个观点的样本,这些观点更代表整个人群。在第二个大型实验中,该策略减少了偏差放大,同时保持信息共享的好处。
Large-scale social networks are thought to contribute to polarization by amplifying people's biases. However, the complexity of these technologies makes it difficult to identify the mechanisms responsible and to evaluate mitigation strategies. Here we show under controlled laboratory conditions that information transmission through social networks amplifies motivational biases on a simple perceptual decision-making task. Participants in a large behavioral experiment showed increased rates of biased decision-making when part of a social network relative to asocial participants, across 40 independently evolving populations. Drawing on techniques from machine learning and Bayesian statistics, we identify a simple adjustment to content-selection algorithms that is predicted to mitigate bias amplification. This algorithm generates a sample of perspectives from within an individual's network that is more representative of the population as a whole. In a second large experiment, this strategy reduced bias amplification while maintaining the benefits of information sharing.