论文标题

卷曲旋转在三个manifold上

Curl through spin on three-manifold

论文作者

Montiel, S.

论文摘要

在过去的几十年中,许多数学家在紧凑型(或没有空边界)上研究了{\ em curl oterator}三个manifolds,主要是其频谱的行为和某些ISO \ -pe \ -ri \ -ri \ -Me \ -Me \ -Me \ -me \ - 有问题的问题。在本文中,我们揭示了该卷曲操作员与狄拉克运算符之间的(意外?)关系,与歧管上的任何旋转$^c $结构相对应。然后,我们将椭圆度(卷发不是)和$ D $ d $ specutrum所知的许多事实,以恢复几乎立即证明上述卷曲的一些结果,并为我获得了其他结果。 {例如,我们会发现卷曲的特征值(删除零频谱零)始终为固定常数,由dirac的特征频谱降至固定常数,而dirac的特征值和平等表征了三个球的表征}。另外,我们还表明,{\ em {\ em不存在与卷发相关的等速度问题的均值$ l^2 $ - 溶解},就像cantarella,de turck,de turck,gluck y teytel \ citite \ cite {cdtgt}一样,是通过这些不知名的属性来实现这些不知名的解决方案(是否可以为这些不知名的解决方案提供)(是否可以为这些属性提供了一种,是否构成了这种不可思议的解决方案,是否有这种属性(是否有这种疾病),以实现这些疾病(是否可以构成强制性的解决方案)。 {\ em Helicity。}

In the last decades, many mathematicians have studied the {\em curl operator} on compact (both with or without empty boundary) three-manifolds, mainly the behaviour of its spectrum and some iso\-pe\-ri\-me\-tric problems associated with it. In this paper, we reveal an (unexpected?) relation between this curl operator and the Dirac operator correspondingto any of the spin$^c$ structures on the manifold. Then, we make the ellipticity of $D$ (curl is not) and the many facts already known about the spectrum of $D$ to recuperate with almost immediate proofs some results above curl and obtain others unknown for me. {\em For example, we will find that the eigenvalues of curl, removing the point spectrum zero, are always, up to a fixed constant, lower bounded by those of the Dirac and the equality characterize the round three-sphere}. Also, we also show that {\em there do not exist mean-convex $L^2$-solutions for the isoperimetric problem associated to curl}, as Cantarella, de Turck, Gluck y Teytel \cite{CdTGT} had conjectured, while other authors proved properties for these unknown solutions (adding always whether optimal domains exist) perhaps by thinking in the case of the successful maximization of the {\em helicity.}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源