论文标题
紧凑型复杂表面的自动形态组:T-Jordan属性,山雀替代性和解决性
Automorphism groups of compact complex surfaces: T-Jordan property, Tits alternative and solvability
论文作者
论文摘要
令$ x $为(平滑)紧凑的复杂表面。我们表明,Biholomormormorthic Automorthism $ \ operatatorName {aut}(x)$的扭转子组几乎是nilpotent。此外,我们研究了$ \ operatorname {aut}(x)$的山雀替代方案,以及$ \ permatatorName {aut}(x)$的几乎可溶解子组的虚拟派生长度。
Let $X$ be a (smooth) compact complex surface. We show that the torsion subgroup of the biholomorphic automorphism group $\operatorname{Aut}(X)$ is virtually nilpotent. Moreover, we study the Tits alternative of $\operatorname{Aut}(X)$ and virtual derived length of virtually solvable subgroups of $\operatorname{Aut}(X)$.