论文标题
当地的Neumann半透明层:重新调整,配对生产和二元性
Local Neumann semitransparent layers: resummation, pair production and duality
论文作者
论文摘要
我们考虑量子标量场的局部半透明的neumann边界条件,这些条件是由二次耦合施加到位于平坦的consimensimensimension-One表面上的源的。在适当的正则化以赋予互动含义的含义后,我们将有效的作用解释为第一量化相空间中的理论。我们在同质背景下对所有顺序计算相关的热内核,并在扰动中进行二次顺序,从而为$ d = 4 $中的相应有效动作提供了封闭的表达。在动态情况下,我们分析了由谐波扰动和索特脉冲引起的对产生的。值得注意的是,我们证明了将这种诺伊曼田地理论与模拟Dirichlet的强度/弱双重性的存在。
We consider local semitransparent Neumann boundary conditions for a quantum scalar field as imposed by a quadratic coupling to a source localized on a flat codimension-one surface. Upon a proper regularization to give meaning to the interaction, we interpret the effective action as a theory in a first-quantized phase space. We compute the relevant heat-kernel to all order in a homogeneous background and to quadratic order in perturbations, giving a closed expression for the corresponding effective action in $D=4$. In the dynamical case, we analyze the pair production caused by a harmonic perturbation and by a Sauter pulse. Notably, we prove the existence of a strong/weak duality that links this Neumann field theory to the analogue Dirichlet one.