论文标题

局部各向异性协方差在球体上的功能

Locally anisotropic covariance functions on the sphere

论文作者

Cao, Jian, Zhang, Jingjie, Sun, Zhuoer, Katzfuss, Matthias

论文摘要

卫星遥感技术的快速发展使得能够在全球范围内收集地理空间数据,因此增加了对可以捕获空间依赖球形域的协方差函数的需求。我们提出了一种基于r^3中协方差函数在球体上构建非组织的,局部各向异性协方差函数的通用方法。我们还提供定理,以指定所产生的相关函数是各向同性或轴向对称的条件。对于在现代应用中常见的球体上的大型数据集,维奇亚近似值用于在统计推断上实现更高的可扩展性。使用模拟数据和沉淀数据集在数值上证明了灵活协方差结构的重要性。

Rapid developments in satellite remote-sensing technology have enabled the collection of geospatial data on a global scale, hence increasing the need for covariance functions that can capture spatial dependence on spherical domains. We propose a general method of constructing nonstationary, locally anisotropic covariance functions on the sphere based on covariance functions in R^3. We also provide theorems that specify the conditions under which the resulting correlation function is isotropic or axially symmetric. For large datasets on the sphere commonly seen in modern applications, the Vecchia approximation is used to achieve higher scalability on statistical inference. The importance of flexible covariance structures is demonstrated numerically using simulated data and a precipitation dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源