论文标题
在Kerr-Lens模式锁定激光器中完全重建时空动力学
Complete reconstruction of the space-time dynamics in a Kerr-lens mode-locked laser
论文作者
论文摘要
我们介绍了在所有时间尺度上激光器中Kerr-Lens模式锁定(KLM)的完整时空动力学的完整数值分析和模拟。 KLM动力学是用于产生超短脉冲的主力机制,它依赖于由于自我聚焦而导致的空间非线性进化与由于自我调制(SPM)和分散体而引起的时间非线性压缩之间的复杂耦合。我们的数值工具模拟了腔体在所有时间尺度上的光场的动态演变:单个往返中脉冲信封的快速时间尺度,以及一个往返在下一个往返之间的缓慢时间尺度。我们采用非线性ABCD形式主义,该形式完全处理激光器中的所有相关效果,即 - 自我聚焦和衍射,分散和SPM,依赖空间的损失和增益饱和。我们通过在各个方面重现KLM中的脉冲形态来确认我们的模型的有效性:在整个空腔堆积过程中,脉搏能量,持续时间和增益的演变(从自发的噪声到稳态)都完全表明了非线性模式竞争,以及最终脉冲在稳态脉冲之间的依赖在稳定状态下的依赖,并且在稳定状态下,在稳定状态之间的脉冲构成了频带的模型和自行构图,并自行自行构想。对脉冲的非线性时空演变的直接观察是可以分析和优化KLM操作的关键推动力,并探索了新的非线性时空现象。
We present a complete numerical analysis and simulation of the full spatio-temporal dynamics of Kerr-lens mode-locking (KLM) in a laser on all time-scales. The KLM dynamics, which is the workhorse mechanism for generating ultrashort pulses, relies on the intricate coupling between the spatial nonlinear evolution due to self focusing and the temporal nonlinear compression due to self-phase modulation (SPM) and dispersion. Our numerical tool emulates the dynamical evolution of the optical field in the cavity on all time scales: the fast time scale of the pulse envelope within a single round trip, and the slow time-scale between one round-trip to the next. We employ a nonlinear ABCD formalism that fully handles all relevant effects in the laser, namely - self focusing and diffraction, dispersion and SPM, space-dependent loss and gain saturation. We confirm the validity of our model by reproducing the pulse-formation in KLM in all aspects: The evolution of the pulse energy, duration, and gain is observed during the entire cavity buildup (from spontaneous noise to steady state), demonstrating the nonlinear mode competition in full, as well as the dependence of the final pulse in steady state on the interplay between gain bandwidth, dispersion and self-phase modulation. The direct observation of the nonlinear space-time evolution of the pulse is a key enabler to analyse and optimize the KLM operation, as well as to explore new nonlinear space-time phenomena.