论文标题
全息洛伦兹和卡洛尔框架
Holographic Lorentz and Carroll Frames
论文作者
论文摘要
放宽邦迪仪表,已证明三维重力的解决方案空间已显示包含一个额外的自由功能,该功能在渐近的广告或平坦的空间中促进了洛伦兹或卡罗尔框架的边界公制。我们进行了这项分析,并表明解决方案空间还接受了有限的符号结构,并利用了内置的歧义。 ADS互合结构平面极限的平滑度选择了一个处方,其中全息异常出现在旋转框架的边界Lorentz对称性中。事实证明,这种异常在同学上等同于标准全息叶基异常,并在平坦极限中生存,从而预测了共形的Carrollian田间理论中量子异常的存在。我们还以Chern-simons公式重新审视了这些结果,其中符号结构的处方接收平滑扁平极限,遵循变异原理,我们计算边界共形仪表中的电荷代数。
Relaxing the Bondi gauge, the solution space of three-dimensional gravity in the metric formulation has been shown to contain an additional free function that promotes the boundary metric to a Lorentz or Carroll frame, in asymptotically AdS or flat spacetimes. We pursue this analysis and show that the solution space also admits a finite symplectic structure, obtained taking advantage of the built-in ambiguities. The smoothness of the flat limit of the AdS symplectic structure selects a prescription in which the holographic anomaly appears in the boundary Lorentz symmetry, that rotates the frame. This anomaly turns out to be cohomologically equivalent to the standard holographic Weyl anomaly and survives in the flat limit, thus predicting the existence of quantum anomalies in conformal Carrollian field theories. We also revisit these results in the Chern--Simons formulation, where the prescription for the symplectic structure admitting a smooth flat limit follows from the variational principle, and we compute the charge algebra in the boundary conformal gauge.