论文标题

KRACL:与稀疏知识图的图形上下文建模的对比度学习图形完成

KRACL: Contrastive Learning with Graph Context Modeling for Sparse Knowledge Graph Completion

论文作者

Tan, Zhaoxuan, Chen, Zilong, Feng, Shangbin, Zhang, Qingyue, Zheng, Qinghua, Li, Jundong, Luo, Minnan

论文摘要

知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都遭受了稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图形和对比度学习的公斤中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三元组的微妙语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。

Knowledge Graph Embeddings (KGE) aim to map entities and relations to low dimensional spaces and have become the \textit{de-facto} standard for knowledge graph completion. Most existing KGE methods suffer from the sparsity challenge, where it is harder to predict entities that appear less frequently in knowledge graphs. In this work, we propose a novel framework KRACL to alleviate the widespread sparsity in KGs with graph context and contrastive learning. Firstly, we propose the Knowledge Relational Attention Network (KRAT) to leverage the graph context by simultaneously projecting neighboring triples to different latent spaces and jointly aggregating messages with the attention mechanism. KRAT is capable of capturing the subtle semantic information and importance of different context triples as well as leveraging multi-hop information in knowledge graphs. Secondly, we propose the knowledge contrastive loss by combining the contrastive loss with cross entropy loss, which introduces more negative samples and thus enriches the feedback to sparse entities. Our experiments demonstrate that KRACL achieves superior results across various standard knowledge graph benchmarks, especially on WN18RR and NELL-995 which have large numbers of low in-degree entities. Extensive experiments also bear out KRACL's effectiveness in handling sparse knowledge graphs and robustness against noisy triples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源