论文标题
防御工程直接总和定理
Direct Sum Theorems From Fortification
论文作者
论文摘要
我们重新访问通信复杂性中的直接总和问题,该问题询问是否共同解决$ n $沟通问题所需的资源是(大约)分别解决这些问题所需的资源之和。我们的工作始于这样的观察,即Dinur和Meir的强化引理可以推广到一般的强化引理,以进行超添加的措施。通过将此引理应用于封面的情况下,我们获得了封面的双重形式,称为“ $δ$ -Fooling Set”,这是一个广义的欺骗集。任何包含来自$δ$ fooling集的元素数量足够数量的矩形都不是单色的。 有了这个事实,我们能够以一个简单的双重计数论点来谴责封面的经典直接总和定理。正式地,令$ s \ subseteq(a \ times b)\ times o $和$ t \ subseteq(p \ times q)\ times z $为两个通信问题,$ \ log \ log \ mathsf {cov} \ left(s \ times t \ times t \ times t \ right) \ log \ mathsf {cov}(t) - \ log \ log \ log | p || q | -4。$ where $ \ m athsf {cov} $表示封面号。当前有关通信复杂性的当前确定性直接总和定理的一个问题是,当$ n $很小时,它们没有提供任何信息,尤其是当$ n = 2 $时。在这项工作中,我们证明了关于协议大小的新的直接总和定理,这意味着在协议大小方面,两个函数的直接总和定理更好。正式地,让$ \ mathsf {l} $表示通信问题的协议大小的复杂性,给定通信问题$ f:a \ times b \ rightarrow \ {0,1 \} $,$ \ log \ mathsf {l} \ left(f \ times f \ right)\ geq \log \mathsf{L}\left(F\right) +Ω\left(\sqrt{\log\mathsf{L}\left(F\right)}\right)-\log\log|A||B| -4 $。我们所有的结果都是使用$δ$ fooling设置以类似方式获得的,以构建直接总和问题的硬核。
We revisit the direct sum questions in communication complexity which asks whether the resource needed to solve $n$ communication problems together is (approximately) the sum of resources needed to solve these problems separately. Our work starts with the observation that Dinur and Meir's fortification lemma can be generalized to a general fortification lemma for a sub-additive measure over set. By applying this lemma to the case of cover number, we obtain a dual form of cover number, called "$δ$-fooling set" which is a generalized fooling set. Any rectangle which contains enough number of elements from a $δ$-fooling set can not be monochromatic. With this fact, we are able to reprove the classic direct sum theorem of cover number with a simple double counting argument. Formally, let $S \subseteq (A\times B) \times O$ and $T \subseteq (P\times Q) \times Z$ be two communication problems, $ \log \mathsf{Cov}\left(S\times T\right) \geq \log \mathsf{Cov}\left(S\right) + \log\mathsf{Cov}(T) -\log\log|P||Q|-4.$ where $\mathsf{Cov}$ denotes the cover number. One issue of current deterministic direct sum theorems about communication complexity is that they provide no information when $n$ is small, especially when $n=2$. In this work, we prove a new direct sum theorem about protocol size which imply a better direct sum theorem for two functions in terms of protocol size. Formally, let $\mathsf{L}$ denotes complexity of the protocol size of a communication problem, given a communication problem $F:A \times B \rightarrow \{0,1\}$, $ \log\mathsf{L}\left(F\times F\right)\geq \log \mathsf{L}\left(F\right) +Ω\left(\sqrt{\log\mathsf{L}\left(F\right)}\right)-\log\log|A||B| -4$. All our results are obtained in a similar way using the $δ$-fooling set to construct a hardcore for the direct sum problem.