论文标题
正交Shimura subvarieties and等分分配的锥
Cones of orthogonal Shimura subvarieties and equidistribution
论文作者
论文摘要
令x为正交的shimura品种,让C_R(x)为由X的X x的正交Shimura subvarieties生成的锥体。我们研究了大量r值的C_R(X)生成光线的渐近性。它们积累朝着X的Kähler类别的楔形产品以及正交Shimura subvarietio的基本类别产生的射线。我们还将C_R(X)与尺寸r的特殊周期生成的锥体进行比较。实现上述结果的主要成分是正交Shimura subvarieties的等分分配。
Let X be an orthogonal Shimura variety, and let C_r(X) be the cone generated by the cohomology classes of orthogonal Shimura subvarieties in X of dimension r. We investigate the asymptotic properties of the generating rays of C_r(X) for large values of r. They accumulate towards rays generated by wedge products of the Kähler class of X and the fundamental class of an orthogonal Shimura subvariety. We also compare C_r(X) with the cone generated by the special cycles of dimension r. The main ingredient to achieve the results above is the equidistribution of orthogonal Shimura subvarieties.