论文标题
基于联盟的多歧视者Biwgan-GP基于虚拟化网络切片的协作异常检测
Federated Multi-Discriminator BiWGAN-GP based Collaborative Anomaly Detection for Virtualized Network Slicing
论文作者
论文摘要
虚拟化网络切片允许在常见的基板基础架构上创建大量逻辑网络,以支持各种服务。虚拟化网络切片是多个虚拟网络函数的逻辑组合,该功能在虚拟机(VM)上以虚拟化技术作为软件应用程序运行。由于网络切片的性能取决于VM的正常运行,因此检测和分析VM中的异常是至关重要的。基于虚拟化网络切片的三层管理框架,我们首先开发了一个基于联合学习(FL)的三层分布式VM Anomaly检测框架,该框架使分布式网络SLICE经理能够协作培训全球VM Anomaly检测模型,同时保留局部指标数据。虚拟化网络切片方案中的高维,不平衡和分布式数据特征使现有的异常检测模型无效。考虑到生成对抗性网络(GAN)从复杂数据中捕获分布的强大能力,我们设计了一个新的多歧视者双向瓦斯坦斯坦GAN具有梯度惩罚(BIWGAN-GP)模型的模型,以从高维度资源指标中学习正常数据分布,这些数据集均在多个VM Monitors上分布在多个VM Monitors上。可以对分布式数据源进行多种歧视器Biwgan-GP模型进行培训,从而避免了由集中式收集和处理本地数据引起的高通信和计算开销。我们将异常评分定义为判断标准,以量化新的指标数据与学习的正态分布的偏差,以检测VMS中引起的异常行为。通过对现实世界数据集的广泛实验评估,验证了所提出的协作异常检测算法的效率和有效性。
Virtualized network slicing allows a multitude of logical networks to be created on a common substrate infrastructure to support diverse services. A virtualized network slice is a logical combination of multiple virtual network functions, which run on virtual machines (VMs) as software applications by virtualization techniques. As the performance of network slices hinges on the normal running of VMs, detecting and analyzing anomalies in VMs are critical. Based on the three-tier management framework of virtualized network slicing, we first develop a federated learning (FL) based three-tier distributed VM anomaly detection framework, which enables distributed network slice managers to collaboratively train a global VM anomaly detection model while keeping metrics data locally. The high-dimensional, imbalanced, and distributed data features in virtualized network slicing scenarios invalidate the existing anomaly detection models. Considering the powerful ability of generative adversarial network (GAN) in capturing the distribution from complex data, we design a new multi-discriminator Bidirectional Wasserstein GAN with Gradient Penalty (BiWGAN-GP) model to learn the normal data distribution from high-dimensional resource metrics datasets that are spread on multiple VM monitors. The multi-discriminator BiWGAN-GP model can be trained over distributed data sources, which avoids high communication and computation overhead caused by the centralized collection and processing of local data. We define an anomaly score as the discriminant criterion to quantify the deviation of new metrics data from the learned normal distribution to detect abnormal behaviors arising in VMs. The efficiency and effectiveness of the proposed collaborative anomaly detection algorithm are validated through extensive experimental evaluation on a real-world dataset.